If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3h^2-14h+16=0
a = 3; b = -14; c = +16;
Δ = b2-4ac
Δ = -142-4·3·16
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2}{2*3}=\frac{12}{6} =2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2}{2*3}=\frac{16}{6} =2+2/3 $
| 20=4^x | | 0.20(y-5)+0.12y=0.08y-0.7 | | 16p^2-324=0 | | 6y^2+63y-33=0 | | 32x27=(17+3)+9= | | 2h^2+25h-13=0 | | -8=4x^2+16x | | 0.02p+0.3=0.22p-20.9 | | x/100=40 | | 8x=2.1 | | 13f^2-15f+2=0 | | (9x-9)(8x+7)=0 | | 7x+5=-4+4x+18 | | 2^x+1+2x+2^x-1=112 | | -1/4x+6=2/3+28 | | 4–8x=6–3x | | -4t+3(2t+)=2(3t-3)-3 | | 25=-3f+4f | | 16-(x+5)=5 | | s–2.3=6.8. | | 381=1/2(9.8t^2) | | √2x-3-x=-1 | | 381=1/29.8t^2 | | -4a+36+7a=3a-9a | | −3=8y−4y | | 1=0.1x-0.8x-55 | | -3x+1.4=14.3 | | 7=3(n-2)+3n | | 3(2z-1)-2(z+9)=z(2+1) | | 3(2z-1)-2(z+9)=z(z+1) | | $87x=135 | | y=3.0-8 |